53 research outputs found

    Methods for rapid and high quality acquisition of whole slide images

    Get PDF

    VERTICES: Efficient Two-Party Vertical Federated Linear Model with TTP-aided Secret Sharing

    Full text link
    Vertical Federated Learning (VFL) has emerged as one of the most predominant approaches for secure collaborative machine learning where the training data is partitioned by features among multiple parties. Most VFL algorithms primarily rely on two fundamental privacy-preserving techniques: Homomorphic Encryption (HE) and secure Multi-Party Computation (MPC). Though generally considered with stronger privacy guarantees, existing general-purpose MPC frameworks suffer from expensive computation and communication overhead and are inefficient especially under VFL settings. This study centers around MPC-based VFL algorithms and presents a novel approach for two-party vertical federated linear models via an efficient secret sharing (SS) scheme with a trusted coordinator. Our approach can achieve significant acceleration of the training procedure in vertical federated linear models of between 2.5x and 6.6x than other existing MPC frameworks under the same security setting

    A method for quantitative analysis of clump thickness in cervical cytology slides

    Get PDF
    Knowledge of the spatial distribution and thickness of cytology specimens is critical to the development of digital slide acquisition techniques that minimise both scan times and image file size. In this paper, we evaluate a novel method to achieve this goal utilising an exhaustive high-resolution scan, an over-complete wavelet transform across multi-focal planes and a clump segmentation of all cellular materials on the slide. The method is demonstrated with a quantitative analysis of ten normal, but difficult to scan Pap stained, Thin-prep, cervical cytology slides. We show that with this method the top and bottom of the specimen can be estimated to an accuracy of 1 μm in 88% and 97% of the fields of view respectively. Overall, cellular material can be over 30 μm thick and the distribution of cells is skewed towards the cover-slip (top of the slide). However, the median clump thickness is 10 μm and only 31% of clumps contain more than three nuclei. Therefore, by finding a focal map of the specimen the number of 1 μm spaced focal planes that are required to be scanned to acquire 95% of the in-focus material can be reduced from 25.4 to 21.4 on average. In addition, we show that by considering the thickness of the specimen, an improved focal map can be produced which further reduces the required number of 1 μm spaced focal planes to 18.6. This has the potential to reduce scan times and raw image data by over 25%

    Dai-Huang-Fu-Zi-Tang Alleviates Intestinal Injury Associated with Severe Acute Pancreatitis by Regulating Mitochondrial Permeability Transition Pore of Intestinal Mucosa Epithelial Cells

    Get PDF
    Objective. The aim of the present study was to examine whether Dai-Huang-Fu-Zi-Tang (DHFZT) could regulate mitochondrial permeability transition pore (MPTP) of intestinal mucosa epithelial cells for alleviating intestinal injury associated with severe acute pancreatitis (SAP). Methods. A total of 72 Sprague-Dawley rats were randomly divided into 3 groups (sham group, SAP group, and DHFZT group, n=24 per group). The rats in each group were divided into 4 subgroups (n=6 per subgroup) accordingly at 1, 3, 6, and 12 h after the operation. The contents of serum amylase, D-lactic acid, diamine oxidase activity, and degree of MPTP were measured by dry chemical method and enzyme-linked immunosorbent assay. The change of mitochondria of intestinal epithelial cells was observed by transmission electron microscopy. Results. The present study showed that DHFZT inhibited the openness of MPTP at 3, 6, and 12 h after the operation. Meanwhile, it reduced the contents of serum D-lactic acid and activity of diamine oxidase activity and also drastically relieved histopathological manifestations and epithelial cells injury of intestine. Conclusion. DHFZT alleviates intestinal injury associated SAP via reducing the openness of MPTP. In addition, DHFZT could also decrease the content of serum diamine oxidase activity and D-lactic acid after SAP

    Antioxidants Condition Pleiotropic Vascular Responses to Exogenous H2O2: Role of Modulation of Vascular TP Receptors and the Heme Oxygenase System

    Get PDF
    Aims: Hydrogen peroxide (H(2)O(2)), a nonradical oxidant, is employed to ascertain the role of redox mechanisms in regulation of vascular tone. Where both dilation and constriction have been reported, we examined the hypothesis that the ability of H(2)O(2) to effect vasoconstriction or dilation is conditioned by redox mechanisms and may be modulated by antioxidants. Results: Exogenous H(2)O(2) (0.1-10.0 μM), dose-dependently reduced the internal diameter of rat renal interlobular and 3rd-order mesenteric arteries (p\u3c0.05). This response was obliterated in arteries pretreated with antioxidants, including tempol, pegylated superoxide dismutase (PEG-SOD), butylated hydroxytoluene (BHT), and biliverdin (BV). However, as opposed to tempol or PEG-SOD, BHT & BV, antioxidants targeting radicals downstream of H(2)O(2), also uncovered vasodilation. Innovations: Redox-dependent vasoconstriction to H(2)O(2) was blocked by inhibitors of cyclooxygenase (COX) (indomethacin-10 μM), thromboxane (TP) synthase (CGS13080-10 μM), and TP receptor antagonist (SQ29548-1 μM). However, H(2)O(2) did not increase vascular thromboxane B(2) release; instead, it sensitized the vasculature to a TP agonist, U46619, an effect reversed by PEG-SOD. Antioxidant-conditioned dilatory response to H(2)O(2) was accompanied by enhanced vascular heme oxygenase (HO)-dependent carbon monoxide generation and was abolished by HO inhibitors or by HO-1 & 2 antisense oligodeoxynucleotides treatment of SD rats. Conclusions: These results demonstrate that H(2)O(2) has antioxidant-modifiable pleiotropic vascular effects, where constriction and dilation are brought about in the same vascular segment. H(2)O(2)-induced oxidative stress increases vascular TP sensitivity and predisposes these arterial segments to constrictor prostanoids. Conversely, vasodilation is reliant upon HO-derived products whose synthesis is stimulated only in the presence of antioxidants targeting radicals downstream of H(2)O(2)
    • …
    corecore